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Fig. 8. Comparison of evacuation time of the cases with two exit doors.

Fig. 9. Comparison of average count of injured agents during evacuation for
all the cases with two exit doors.

evenly at both the doors, while in Case III one door (the
lower one) has low visibility, so the agents do not get divided
evenly, which increases the physical discomfort level of the
agents at the upper door. The count of agents who experience
pressure above the threshold (resulting in injury) is really high
in Case III.

Case IV has a low evacuation rate due to the low visibility
of both doors, but the physical discomfort count is less in
comparison to Case III because the crowd gets divided evenly
between the doors due to herding behavior.

There are good things to be said about both Cases II and V,
but Case II proves to be the best.

B. Evacuation Given Obstacles

Case VI: This is similar to Case I, but with obstacles added.
Unlike the previous cases where we had not considered the
presence of obstacles in the environment, this shows how the
presence of obstacles creates bottlenecks for evacuations and
can completely change the locations, which are considered
best for an emergency door or normal exit door.

So, there is a need to identify these locations and bottlenecks
which can cause a lot of trouble at the time of emergency
evacuation. We have a simple bottleneck obstacle in front of
the exit door.

C. Lecture Hall Evacuation

In this scenario (see Fig. 10), based on the floor plan of
a real-lecture hall known to the authors, there are 160 agents

Fig. 10. Lecture hall evacuation.

Fig. 11. Flow of lower door and upper door in the lecture hall case.

Fig. 12. Average panic of an agent near lower door and upper door.

(lecture attendees) and 160 seats, which seat the agents but
also become obstacles during evacuation. There are two exit
doors, one at the lower right corner and one at the upper left
corner. Agents are more familiar with the lower door, which
is regularly used, so its visibility is very high. The upper door
leads to an uncommon area and is not used frequently, hence
its visibility is low.

The framework of this simulation is explained in
Section III-E. Figs. 3 and 4 explain the nodes we have
identified. In this case, our rules were simple. All agents at
nodes 2 and 4 move to their left or right randomly. Once the
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Fig. 13. Distribution of panic and physical force received by the agent. When
agent get a sustained physical force its panic starts to increase.

agents reach nodes 5 and 7, they follow queuing behavior by
adjusting their multipliers. At node 9 and 10, agents follow
herding behavior to go to the nearest exit door.

Fig. 11 presents a graph which is proportional to the count
of the agents coming out from both the doors. As we have
noted that lower door has high visibility, so the count of agents
coming out from it is higher than from the low-visibility upper
door. Fig. 12 presents the comparison of average panic levels
of the agents near the lower door and the upper door, which
clearly shows that the upper door area has higher levels of
panic during evacuation, so this result suggests that. This result
is encouraging for our panic model. Fig. 13 also presents
an interesting result which shows that if physical pressure is
sustained at high value for some time the panic level of the
agent starts increasing rapidly.

V. CONCLUSION

Our method of crowd path planning during emergency
evacuation is seen to be successful at giving qualitative and
some useful quantitative analyses. Qualitative analysis is also
useful to understand the complex psychological and physical
behavior of human, and the task of giving any quantitative
analysis may or may not give any useful results and may not
be trusted every time. We have successfully evaluated some
very simple floor plans and how positions of obstacles can
significantly change the environment in terms of emergency
evacuation. Our results for the model of panic are encouraging
and suggest the validity of the factors we have chosen to
associate with panic on emergency evacuations.

We can suggest with confidence that positioning doors in
the middle of a wall has an advantage in evacuation scenarios,
compared with similar doors at the corners. From the lecture
hall evacuation, we can conclude that the visibility of the doors
play a huge role in ease of evacuation and sustained physical
pressure increase the panic and increase the evacuation time
even in simple scenarios. We have also given a general
framework for testing various evacuation strategies, which is
very difficult to analyze through mock drills.

Possible future work that could extend our model would
be to incorporate more sophisticated human behaviors

(e.g., clustering by families and groups of friends). Special
scenarios requiring evacuations, such as fires, explosions,
active shooters, and so on, can also be explored, as can
evacuations in special settings, such as aircraft, ships, and large
buildings and urban complexes.
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